
Tetrahedron
Tetrahedron Letters 45 (2004) 5811–5814

Letters
[3+2] Cycloaddition reactions: a simple entry to the
1-aza-2-oxo-3,4,5,6-tetrahydroxybicyclo[3.3.0]octane ring system
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Abstract—The [3+2] intramolecular nitrone cycloaddition (INC) reaction on appropriately designed olefinic nitrones derived from
DD-glucose, having the nitrone at C-1 and a,b-unsaturated ester functionalities at C-5 of the sugar backbone, afforded the isoxazo-
lidine fused carbocycles 11–13, which were subsequently transformed into the chiral, tetrahydroxylated cis-azabicyclo[3.3.0]octa-
nones 14–18 in good yields.
� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Bicyclic lactams with the azabicyclo[3.3.0]octanone ring
system are reported to possess serine protease inhibitory
activity,1 and many of them are used as anxiolytics as
well to improve brain function.2 A bicyclic cis-lactam
having the (1S,5S)-2-azabicyclo[3.3.0]octane moiety3 is
the basic structural element of the angiotensin convert-
ing enzyme (ACE) inhibitor HOE 498. Furthermore,
hydrolytic ring opening of the cis-lactam of skeleton 1
could furnish novel restricted analogues4 of GABA,
which is regarded as a major inhibitory neurotransmit-
ter. There are many reports on the synthesis of these
compounds involving, among others, (i) cyclization of
trans-2-aminocyclopentane acetic acid with Mukai-
yama’s reagent under high dilution conditions,5 (ii)
tandem [4+2]/[3+2] cycloaddition of a nitroalkene to an
alkene followed by hydrogenolysis of the resulting cyclo-
adduct,6 (iii) iodolactamization of an olefinic amide
through an N,O-bis(trimethylsilyl)imidate derivative,7

(iv) addition of the ketene acetal or titanium enolate of a
2-pyridylthioester to an acyliminium ion followed by
ring closure,8 and (v) radical cyclization of an N-(1-cyclo-
alken-1-yl)-a-haloacetamide.9 Introduction of chirality
has been achieved by using chiral amino acids, by chiral
induction or by kinetic resolution of racemic mixtures.
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However, most of these methods involve long proce-
dures and the use of costly reagents so that the devel-
opment of expedient and flexible synthetic routes to
novel classes of enantiomerically pure bicyclic lactams
continues unabated. Literature reports as well as our
experience with the application of intramolecular nit-
rone cycloaddition (INC) reactions10;11 on various DD-
glucose derived substrates allowed us to envisage that an
appropriate a,b-unsaturated ester generated from a C-5
aldehyde should undergo prompt cycloaddition with a
nitrone at C-1 (formed by reaction of the latent aldehyde
with N-benzyl hydroxylamine). The reaction is expected
to be driven by the favourable interaction of the HOMO
of the nitrone component with the LUMO of the Z-
substituted olefin, leading to an isoxazolidine product 2.
Subsequent hydrogenolytic opening of the isoxazolidine
ring should be accompanied by spontaneous lactami-
zation, offering an expedient route to chiral cis-fused
bicyclic lactams 1. Figure 1 summarizes retrosyntheti-
cally our approach.
2. Results and discussion

5-Aldo-1,2-O-cyclohexylidene-a-DD-glucofuranose (5) and
5-aldo-1,2-O-isopropylidene-a-DD-glucofuranose (6) were
prepared from the respective dicyclohexylidene-/diace-
tone-DD-glucose derivatives 3 and 4 through benzylation
(PhCH2Br, CH2Cl2, 50% aq NaOH, n-Bu4N

þBr�, rt,
12 h) of the C-3–OH followed by selective deprotection
of the 5,6-ketal with 80% HOAc and vicinal diol
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Figure 1. Retrosynthetic analysis for the azabicyclo[3.3.0]octanone

ring system.

5812 A. Roy et al. / Tetrahedron Letters 45 (2004) 5811–5814
cleavage using NaIO4 in aq EtOH. The conjugated es-
ters used in this study were prepared by Wittig reactions.
Thus, treatment of 5 with 2-(triphenylphosphanylid-
ene)propionic acid ethyl ester led to the a,b-unsaturated
ester 712 (65%). In a similar manner, the aldehyde 6
afforded 10 (71%) with 2-(triphenylphosphanylid-
ene)succinic acid 1-methyl ester.13 However, a mixture
of olefinic compounds 8 (42%) and 9 (21%) resulted
when triphenylphosphanylidene acetic acid methyl ester
was reacted with 6 (Scheme 1).

Removal of protection from the 1,2 positions of 7, 8 and
10 created latent aldehydes at C-1, which were reacted
with N-benzyl hydroxylamine (followed by diazo-
methane treatment in the case of 10) to generate the
corresponding isoxazolidine derivatives 11–13 in good
yields, conceivably through spontaneous cyclization (the
INC reaction)14 of the expected nonisolable nitrones.
Subsequent reductive opening15 of the isoxazolidine
rings in 11 and 12 under hydrogenolytic conditions16

directly furnished the respective chiral bicyclic lactams
14 and 15. Similar reaction with 13 afforded the expected
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Scheme 1. Preparation of olefin-esters 7–10.
lactam 17. Acetylation of 15 and 17 furnished their
tetra- and tri-acetate derivatives 16 and 18, respectively,
whose well-resolved 1H NMR spectra proved very
helpful in structure elucidation (Scheme 2).

The structures of the products were deduced unequivo-
cally from spectral studies. Of particular importance was
the finding that in the 1H NMR of 9, the b-hydrogen
atom has a more downfield chemical shift (d 6.94 vs
6.40) and the H–C@C–H coupling constant is larger
(15.7 vs 11.7) when compared to those of 8, which set-
tled the orientation of the double bond in these com-
pounds. The d values for the b-hydrogens in 7 and 10
(6.89 and 7.06, respectively) are close to that of the
corresponding proton in 9, suggesting the geometry
shown.

The formation of the isoxazolidine rings in 11–13 was
concluded from their 1H and 13C NMR spectra. The IR
spectrum of 12 indicated the formation of a five-mem-
bered lactone ring (mmax at 1775 cm�1), proving that the
hydroxyl (generated at C-4) and the carbomethoxy
groups must be on the same face of the intermediate
hydroxy ester. The stereochemistry at C-2, C-3 and C-4
(glucose numbering) in 12 should be the same as the
corresponding carbons in DD-glucose, as these were not
disturbed during the reaction sequence. As the two
olefinic protons in 8 were cis, they should also be cis
related in product 12.

The cis ring juncture shown is energetically favoured in
the case of the bicyclo[3.3.0]octane17 system. Molecular
modelling studies (Chem. Office 6.0 using the MM2
programme followed by molecular dynamics) revealed
that the minimum energy conformer of the cis isomer 14
has far less steric energy (12.9 kcal/mol) than its trans
isomer (26.4 kcal/mol). Similarly, the structures and
stereochemistries of 10 and 13 were concluded from the
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Scheme 2. Conversion of INC reaction products to bicyclic lactams.

A. Roy et al. / Tetrahedron Letters 45 (2004) 5811–5814 5813
stereochemistry of the olefin as well as from the absence
of a lactone moiety in the compounds, showing that the
C-4 OH and C-3 CO2CH3 groups are not close in space.

For the lactam 14, the cross peaks between C-3a H and
C-3 CH3 in its NOESY spectrum indicated their cis
relationship; the absence of similar peaks between C-3 H
and C-3a H in the NOESY spectrum of 15 suggested
their trans disposition. Likewise, the structure of 17 was
deduced based on its formation from 13.
3. Conclusion

In summary, we have developed a strategy to synthesize
chiral bicyclic lactam rings using intramolecular 1,3-
dipolar nitrone cycloaddition reactions on DD-glucose
derived substrates. The simplicity and versatility of
precursor preparation, the feasibility of carrying out the
precursor assembly and the cycloaddition in a tandem
process, and the efficacy of the reaction make the pres-
ent approach one of the simplest and most practical to
such substituted azabicyclo[3.3.0]octanones. The scope
and limitation of the method for the synthesis of other
systems with different ring sizes is under study.
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